1,410 research outputs found

    The Rules of Standard Setting Organizations: An Empirical Analysis

    Get PDF
    This paper empirically explores the procedures employed by standard-setting organizations. Consistent with Lerner-Tirole (2004), we find (a) a negative relationship between the extent to which an SSO is oriented to technology sponsors and the concession level required of sponsors and (b) a positive correlation between the sponsor-friendliness of the selected SSO and the quality of the standard. We also develop and test two extensions of the earlier model: the presence of provisions mandating royalty-free licensing is negatively associated with disclosure requirements, and when there are only a limited number of SSOs, the relationship between concessions and user friendliness is weaker.

    The Rules of Standard Setting Organizations: an Empirical Analysis

    Get PDF
    This paper empirically explores standard-setting organizations ’ policy choices. Consistent with Lerner-Tirole (2006), we find (a) a negative relationship between the extent to which an SSO is oriented to technology sponsors and the concession level required of sponsors and (b) a positive correlation between the sponsor-friendliness of the selected SSO and the quality of the standard. We also develop and test two extensions of the earlier model: the presence of provisions mandating royalty-free licensing is negatively associated with disclosure requirements, and the relationship between concessions and user friendliness is weaker when there is only a limited number of SSOs

    The Next 700 Semantics: A Research Challenge

    Get PDF
    Modern systems consist of large numbers of languages, frameworks, libraries, APIs, and more. Each has characteristic behavior and data. Capturing these in semantics is valuable not only for understanding them but also essential for formal treatment (such as proofs). Unfortunately, most of these systems are defined primarily through implementations, which means the semantics needs to be learned. We describe the problem of learning a semantics, provide a structuring process that is of potential value, and also outline our failed attempts at achieving this so far

    Event Loops as First-Class Values: A Case Study in Pedagogic Language Design

    Full text link
    The World model is an existing functional input-output mechanism for event-driven programming. It is used in numerous popular textbooks and curricular settings. The World model conflates two different tasks -- the definition of an event processor and its execution -- into one. This conflation imposes a significant (even unacceptable) burden on student users in several educational settings where we have tried to use it, e.g., for teaching physics. While it was tempting to pile on features to address these issues, we instead used the Scheme language design dictum of removing weaknesses that made them seem necessary. By separating the two tasks above, we arrived at a slightly different primitive, the reactor, as our basis. This only defines the event processor, and a variety of execution operators dictate how it runs. The new design enables programmatic control over event-driven programs. This simplifies reflecting on program behavior, and eliminates many unnecessary curricular dependencies imposed by the old design. This work has been implemented in the Pyret programming language. The separation of concerns has enabled new curricula, such as the Bootstrap:Physics curriculum, to take flight. Thousands of students use this new mechanism every year. We believe that reducing impedance mismatches improves their educational experience

    Near-field imaging of plasmonic nanopatch antennas with integrated semiconductor quantum dots

    Get PDF
    Plasmonic nanopatch antennas that incorporate dielectric gaps hundreds of picometers to several nanometers thick have drawn increasing attention over the past decade because they confine electromagnetic fields to grossly sub-diffraction-limited volumes. Substantial control over the optical properties of excitons and color centers confined within these plasmonic cavities has already been demonstrated with far-field optical spectroscopies, but near-field optical spectroscopies are essential for an improved understanding of the plasmon–emitter interaction at the nanoscale. Here, we characterize the intensity and phase-resolved plasmonic response of isolated nanopatch antennas by cathodoluminescence microscopy. Furthermore, we explore the distinction between optical and electron beam spectroscopies of coupled plasmon–exciton heterostructures to identify constraints and opportunities for future nanoscale characterization and control of hybrid nanophotonic structures. While we observe substantial Purcell enhancement in time-resolved photoluminescence spectroscopies, negligible Purcell enhancement is observed in cathodoluminescence spectroscopies of hybrid nanophotonic structures. The substantial differences in measured Purcell enhancement for electron beam and laser excitation can be understood as a result of the different selection rules for these complementary experiments. These results provide a fundamentally new understanding of near-field plasmon–exciton interactions in nanopatch antennas, which is essential for myriad emerging quantum photonic devices
    corecore